我相信关于人工智能大家已经接触了很多相关的内容,包括技术、商业模式等,但是听到的内容和实际操作之间还有很大的差距。今天主要想和大家分享我在“如何衔接技术-商业”方面的思考。
一、我将人工智能分为三类:
1.识别
在视觉上,基于相对活动物体的识别已经发展到一定水平。识别的核心“人脸识别”和“语音识别”也具有很大的突破。因此,原来人所具有的感性体验现在也能够被机器所掌握。
2.判断——最具商业价值
能够协助人们进行选择或者判断。比如:阿尔法狗就是在帮助人们为棋子选取一个更好的位置。
判断被越来越多地应用到实际工作生活领域,比如:广告,未来在基金方面也有可能由机器自主进行决策购买行为。
3.创造
在学术界里面研究较多的就是创造类,比如:帮助人类合成一段文字或者语音等。谷歌发布的WaveNet就是基于语音网络使用生成算法制作而成的,相对于以前的拼接法、参数法,在声音质量上更具优势。
WaveNet采用了扩大卷积和因果卷积的方法,让感受野随着网络深度增加而成倍增加,可以对原始语音数据进行建模。(来自知乎)
以前方法集中虽多,但性能慢,每合成一秒的音频需要用时几分钟之多。
到目前为止,创造本身仍停留在学术阶段,当然如果有人能够控制无人驾驶领域就另当别论了。但是即便拥有无人驾驶技术,技术本身仍然不具商业价值,因为目的地是由用户指定的,商业利益弱。
费曼(1965年诺贝尔物理奖得主)曾说过:
凡是我们不能创造的就是我们不能理解的
比如:除了生孩子以外的方法我们不能创造生命。虽然创造在商业上并没有直接的用处,但是有助于我们对基础的理解。