二维码
微世推网

扫一扫关注

当前位置: 首页 » 快闻头条 » 今日热点 » 正文

伽利略悖论,没有不可能

放大字体  缩小字体 发布日期:2018-02-03 06:42:12    浏览次数:181
导读

伽利略悖论让人见识了无限集合的惊人特性。在他最后的科学著作《两种新科学》里,伽利略写出了这个关于正整数的矛盾陈述。首先,部分数属于平方数,其它则不是;因此,所有数,包含平方数和非平方数的集合必定大于单

伽利略悖论让人见识了无限集合的惊人特性。

在他最后的科学著作《两种新科学》里,伽利略写出了这个关于正整数的矛盾陈述。

首先,部分数属于平方数,其它则不是;因此,所有数,包含平方数和非平方数的集合必定大于单独的平方数。

然而,对于每个平方数有且只有一个对应的正数平方根,切对于每个数都必定有一个确定的平方数;所以,数和平方数不可能某一方更多。

这个悖论虽然不是最早但也是早在无限集合中运用一一对应的例子。伽利略在书中总结说,少、相等和多只能描述有限集合,却不能描述无限集合。

19世纪德国数学家格奥尔格·康托尔,也是数集理论的开创者,使用了相同的手法否定了伽利略的这条限制条件的必要性。

康托尔认为在无限数集中进行有意义的比较是可行的(康托尔认为数和平方数这两个集合的大小是相等的),在这种定义下,某些无限集合肯定是比另一些无限集合大。

伽利略对后继者在无穷数上的突破的预测惊人的准确,伽利略在书中写到,一条线段内所有点的数目和比此更长的线段上点的数目相等,但是伽利略没有想出康托尔的证明法,即线段上所有点的数比整数大。

 
(文/小编)
打赏
免责声明
• 
本文为小编原创作品•作者: 小编。欢迎转载,转载请注明原文出处:http://www.udxd.com/news/show-33467.html 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们邮件:weilaitui@qq.com。
 

Copyright©2015-2023 粤公网安备 44030702000869号

粤ICP备16078936号

微信

关注
微信

微信二维码

WAP二维码

客服

联系
客服

联系客服:

24在线QQ: 770665880

客服电话: 020-82301567

E_mail邮箱: weilaitui@qq.com

微信公众号: weishitui

韩瑞 小英 张泽

工作时间:

周一至周五: 08:00 - 24:00

反馈

用户
反馈